We consider skew scattering in this note taking single gate screened Coulomb potential with charge 1 as example.

V=R = —— (2 !
AT T dnee\Ir— Rl r-RE+ @

Here% is the distance between TBG and gate. In plane wave basis, we have the scattering Hamiltonian H;
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Here ei@RiV;(q) = e!dRi [ dr e T—RIY,(|r — R;|) = elq'Riié(l —e79%) and Q is the total area. We would like to
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rewrite this term in band basis to finish computation of scattering matrix
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Here we use unitary transformation ¢, , = Zmu;‘n(k+l()c,‘;m and define the form factor A, ,(k,k+q+ Q)=

Yk U (k + K)u,(k+ q + K + Q). Only considering flat band part and sum over all scattering center R;, one can extract
the scattering potential matrix Vi p.x+qn
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According to Lippmann-Schwinger formula and Born approximation, we keep the scattering matrix T up to the second
order of V

T=V+V—u8uw——V
€xm — Ho +ipt

For symmetric contribution of scattering rate, we have Fermi’s golden rule with leading order O (V?)
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But this symmetric scattering will not contribute to skew scattering, one need to compute antisymmetric scattering rate

W,Ejig;km with leading order O (V?)
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Here ( )q4is is the distribution average for scattering center, A is small and the summation only for states which within the
energy region € ,, £A and we have used the equation below to derive the formula above
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We assume different scattering centers are random distribution and keep the leading order of impurity density%then the

contribution is direct production keeping momentum conservation. Ignore side jump, and finally we can put this w, (’:,)l k+qn

in the skew scattering conductance coming from Boltzmann equation
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Here [ is the label for state with momentum k and band m. We expand w;; and f; up to leading order by seeing

antisymmetric scattering rate (n)l k+qn and electric field E = E,e™* as perturbation
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Here £,""*"2) means distribution function of order E™ and (w®)"™ and £, is fermi distribution. By noticing
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Y wl(l‘,‘) = 0, We have recursive relation

1,0 i 0,0 S ,0 ,0
atfl( )+anelwtaafl( ) _ _Zwl(’l) (f(l ) fl(l ))

ll

@y _ (s) [CRVRIPICEY (4) £(1,0)
e/, Z Wy fl —fy ) Z wyr fy
0% + qEqeta, ;0 = Zw(s) 20 fl(zo))

2,1 i 1,1 S 2,1 2,1 A 2,0
0 + qEgeivta, OV = ZW() fz( ) )) Z w20
l’
Take relaxation time approximation
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We can solve recursive equations self-consistently
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According to the definition of current operator and velocity operator
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The dominant contribution from skew scattering is
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Here 1,,, means the summation to band label in L. If we assume w — 0 and 7("+"2) — ¢, we have
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Here a,; means the partial derivative at band n and momentum k + q. These expressions are the form easy to compute

numerically. One can notice only bands near fermi surface will contribute according to 9 fn(o'o) (k + q). We take m as flat

bands in TBG. By setting an energy window A, for a given k we compute ";( ) and collect all states within the energy

window. By iterating collected states, we can compute the rest part in the integral.



