
Here I would like to introduce Quantum Mento Carlo (QMC) routine and sign problem first, then 

introduce the model we use, and why the average sign is limited. 

 

1. Quantum Mento Carlo 

Imagine we have a fermion system with Hamiltonian, 

𝐻𝐼 = ∑ 𝑉(𝑞)𝜌−𝑞𝜌𝑞

𝑞

= ∑ 𝑉(𝑞)𝜌𝑞
†𝜌𝑞
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𝜌𝑞 = ∑ 𝜆𝑖,𝑗(𝑞)𝑐𝑖
†𝑐𝑗

𝑖,𝑗
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We require 𝑉(𝑞) = 𝑉(−𝑞) > 0, 𝜇 is real and 𝑇𝑟 (𝜆𝑖,𝑗(𝑞)) = 𝜇. In physics, it is a general form 

for Coulomb repulsion in density channel with chemical potential 𝜇 for half-filled and flat band 

limit. 

Next, we would like to introduce HS transformation to decouple 4-fermion interaction to 2-fermion 

coupled with an auxiliary field. Here is the general HS transformation and its discrete version, one 

can see it as a Gaussian integral and parameter fitting after Taylor expansion. 
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Write down its partition function, to get a small 𝛼, we need Trotter decomposition first and do HS 

transformation for each decomposed slice. 
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𝐴𝑞 = √∆𝜏𝑉(𝑞) 

For any observable 𝑂̂, its ensemble average is 

〈𝑂̂〉 =
𝑇𝑟(𝑂̂𝑒−𝛽𝐻𝐼)

𝑇𝑟(𝑒−𝛽𝐻𝐼)
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𝐵̂𝑡({𝑙|𝑞|,𝑡}) = ∏ 𝑒𝑖𝜂(𝑙|𝑞1|,𝑡)𝐴𝑞(𝜌−𝑞+𝜌𝑞)𝑒𝜂(𝑙|𝑞2|,𝑡)𝐴𝑞(𝜌−𝑞−𝜌𝑞)
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One can see orange part as a possibility distribution and blue part as sample value at certain 

configuration 𝑙|𝑞|,𝑡. Then Mento Carlo can finish the sample according to this distribution and get. 

 

2. Sign problem 

One can see 𝑃({𝑙|𝑞|,𝑡}) is always positive, but we cannot make sure 𝑇𝑟[∏ 𝐵̂𝑡({𝑙|𝑞|,𝑡})𝑡 ] is always 

non-negative for all configuration, generally. If it is the case 𝑇𝑟[∏ 𝐵̂𝑡({𝑙|𝑞|,𝑡})𝑡 ] is not always non-

negative, we carry out our simulation by equation below. 

〈𝑂̂〉 =
𝑇𝑟(𝑂̂𝑒−𝛽𝐻𝐼)

𝑇𝑟(𝑒−𝛽𝐻𝐼)
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The numerator part is nothing but a Mento Carlo simulation with a non-negative distribution and an 

observable modified with a phase. The problem here is the denominator 〈𝑠𝑖𝑔𝑛〉 =
∑ 𝑃(𝑆){𝑆}

∑ |𝑃(𝑆)|{𝑆}
. If this 

one is small, the fluctuation is huge, and we hardly get a meaningful result. 

 

3. Why 𝑻𝒓 (𝝀𝒊,𝒋(𝒒)) = 𝝁 is useful? 

In our last paper computing Twisted Bilayer Graphene (TBG), we proved at this situation, 

𝑇𝑟[∏ 𝐵̂𝑡({𝑙|𝑞|,𝑡})𝑡 ] is always real. Besides, we observed that 〈𝑠𝑖𝑔𝑛〉 is a finite at low temperature, 

and not going to zero very fast with system size, which we can hardly give a reasonable explanation. 

Here I will introduce our proof that 𝑇𝑟[∏ 𝐵̂𝑡({𝑙|𝑞|,𝑡})𝑡 ] is always real first. 

According to equation below, where 𝑀𝑖 are linear combination of 2-fermion operators. 

𝑇𝑟(𝑒𝑀1𝑒𝑀2 ⋯ 𝑒𝑀𝑛) = det(𝐼 + 𝑒𝑀1𝑒𝑀2 ⋯ 𝑒𝑀𝑛) 

We can see 

𝐵̂𝑡({𝑙|𝑞|,𝑡}) = ∏ 𝑒𝑖𝜂(𝑙|𝑞1|,𝑡)𝐴𝑞(𝜌−𝑞+𝜌𝑞)𝑒𝜂(𝑙|𝑞2|,𝑡)𝐴𝑞(𝜌−𝑞−𝜌𝑞)
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𝑇𝑟 [∏ 𝐵̂𝑡({𝑙|𝑞|,𝑡})

𝑡

] = 𝑒−
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∑ 𝑇𝑟(𝑀𝑗)𝑗 det(𝐼 + 𝑒𝑀1𝑒𝑀2 ⋯ 𝑒𝑀𝑛) 

By noticing 𝑀𝑖 are all anti-Hermitian so that 𝑒𝑀𝑖 are all unitary, we define a unitary operator 𝑈 =

𝑒𝑀1𝑒𝑀2 ⋯ 𝑒𝑀𝑛, det(𝑈) = 𝑒∑ 𝑇𝑟(𝑀𝑗)𝑗 = 𝑒∑ 𝑖𝜆𝛼𝛼 = 𝑒𝑖𝛤. Here 𝑒𝑖𝜆𝛼 are eigenvalues of 𝑈. 
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So, we proved 𝑃({𝑙|𝑞|,𝑡})𝑇𝑟[∏ 𝐵̂𝑡({𝑙|𝑞|,𝑡})𝑡 ] is real. 

 

4. Why 〈𝒔𝒊𝒈𝒏〉 is finite? 

We will give a very rough range of 〈𝑠𝑖𝑔𝑛〉 in this page and state 〈𝑠𝑖𝑔𝑛〉 will not continue decay 

with 𝛽 for finite matrix size 𝐷. Here we assume 𝑇𝑟 (𝜆𝑖,𝑗(𝑞)) = 𝜇 = 0. 

The Hamiltonian before decoupled is in a form below, 

𝐻𝐼 = ∑ 𝑉𝑞𝜌𝑞
†𝜌𝑞

𝑞

= ∑
𝑉|𝑞|

2
[(𝜌𝑞

† + 𝜌𝑞)
2

− (𝜌𝑞
† − 𝜌𝑞)

2
]

|𝑞|

 

Any 〈𝐻𝐼〉  is no less than 0, so the ground states satisfy 𝜌𝑞|𝜑0⟩ = 0 . |𝜑0⟩  should also be the 

eigenstate of total particle number 𝑁 (particle number conservation). 

Since there is no constant term in 𝜌𝑞 = ∑ 𝜆𝑖,𝑗(𝑞)𝑐𝑖
†𝑐𝑗𝑖,𝑗  , there are at least two |𝜑0⟩  satisfy 

𝜌𝑞|𝜑0⟩ = 0 that is full occupy and empty situations. 

Now we would like to know 

𝑍 = lim
𝑁𝑏→∞

𝑇𝑟((𝑒−∆𝑡𝐻)𝑁𝑏) 

It is then obvious that in this limit, only ground state energy will contribute to 𝑍. 

𝑍 = lim
𝛽→∞

𝑘𝑒−𝛽𝐸0 = 𝑘 

Here 𝑘 is degeneracy of ground state, and 𝐸0 = 0 exactly. From discussion above we know 𝑘 is 

no less than 2. 

Now let us consider another 𝜌𝑞 where dimension doubled with the same copy in original 𝜌𝑞, 

𝜌𝑞 → 𝜌𝑞,1 + 𝜌𝑞,2 = ∑ 𝜆𝑖,𝑗(𝑞)𝑐𝑖,1
† 𝑐𝑗,1 + ∑ 𝜆𝑖,𝑗(𝑞)𝑐𝑖,2

† 𝑐𝑗,2 

Since 𝑇𝑟(𝜌𝑞,1) = 𝑇𝑟(𝜌𝑞,2) = 0 , one should notice that for n-particle state |𝜑0,1⟩  which makes 

𝜌𝑞,1|𝜑0,1⟩ = 𝜆𝑛|𝜑0,1⟩ , there is always another 𝐷 − 𝑛  particles state satisfying 𝜌𝑞,1|𝜑0,1
′ ⟩ =

−𝜆𝑛|𝜑0,1
′ ⟩. So, |𝜑0,1⟩⨂|𝜑0,2

′ ⟩ is a new ground state for 𝜌𝑞
†𝜌𝑞. This will lift degeneracy of ground 

state from 𝑘 to some value 𝑚, here 𝑘2 < 𝑚 < 𝑘2 + 2𝐷 − 2 (at least 𝑚 is independent with 𝛽 

and finite). 2𝐷 − 2 comes from ∑ 𝐶𝐷
𝑖𝐷−1

𝑖=1 = 2𝐷 − 2, and < comes from those new ground states 

are not necessarily ground state for all 𝑞. 

In QMC decoupled Hamiltonian, the argument above means, 

𝑍 = ∑ 𝑃(𝜙)𝐷(𝜙)

{𝜙}

= 𝑘 

𝑍2 = ∑ 𝑃(𝜙)𝐷2(𝜙)

{𝜙}

= 𝑚 

Since we have discussed for this kind of 𝜌𝑞, determinants 𝐷(𝜙) are always real, by defining 

𝑍𝑟 = ∑ 𝑃(𝜙)|𝐷(𝜙)|

{𝜙}

= 〈|𝐷(𝜙)|〉 > 0 

We would expect 



〈𝐷(𝜙)〉2 ≤ 〈|𝐷(𝜙)|〉2 ≤ 〈𝐷2(𝜙)〉 

𝑘 ≤ 𝑍𝑟 ≤ √𝑚 

Finally, for 〈𝑠𝑖𝑔𝑛〉 

𝑘

√𝑘2 + 2𝐷 − 2
≤

𝑘

√𝑚
≤ 〈𝑠𝑖𝑔𝑛〉 ≤ 1 

This is the result we get before. Since 2𝐷 grows exponentially with 𝐷, even though we controlled 

this range of 〈𝑠𝑖𝑔𝑛〉, this control is not good enough to explain much larger 〈𝑠𝑖𝑔𝑛〉 than 
𝑘

√𝑘2+2𝐷−2
 

observed in simulation. 

Very interestingly, I find another operator which commute with Hamiltonian after we introduce 

𝜌𝑞 → 𝜌𝑞,1 + 𝜌𝑞,2 , so that the up limit of degeneracy 𝑚  can be smaller than 𝑘2 + 2𝐷 − 2 . The 

operator is defined below, 

∆= ∑ 𝑐
𝑖′,1
† 𝑐𝑖′,2

𝑖′

 

One can check, 

[∆, 𝜌𝑞,1 + 𝜌𝑞,2] = [∑ 𝑐
𝑖′,1
† 𝑐𝑖′,2

𝑖′

, ∑ 𝜆𝑖,𝑗(𝑞)𝑐𝑖,1
† 𝑐𝑗,1 + ∑ 𝜆𝑖,𝑗(𝑞)𝑐𝑖,2

† 𝑐𝑗,2] 

= ∑ −𝜆𝑖,𝑗(𝑞)𝑐𝑖,1
† 𝑐𝑗,2 + ∑ 𝜆𝑖,𝑗(𝑞)𝑐𝑖,1

† 𝑐𝑗,2 = 0 

So, if |𝜓0⟩ is a ground state, ∆|𝜓0⟩ is also a ground state with adding a particle in subspace 1 and 

reducing a particle in subspace 2. For most general 𝜆𝑖,𝑗(𝑞) (say generated randomly), 𝑘 = 2 for 

full occupy and empty ground states |𝜓𝐹⟩  and |𝜓𝐸⟩ . After 𝜌𝑞 → 𝜌𝑞,1 + 𝜌𝑞,2 , we can see 

|𝜓𝐹,1⟩⨂|𝜓𝐹,2⟩  and |𝜓𝐸,1⟩⨂|𝜓𝐸,2⟩  are 2 ground states. Besides, (∆)𝑛|𝜓𝐸,1⟩⨂|𝜓𝐹,2⟩  also gives 

𝐷 + 1 ground states. Then we have 𝑚 = 𝐷 + 3 for 𝑘 = 2. 

2

√𝐷 + 3
=

𝑘

√𝑚
≤ 〈𝑠𝑖𝑔𝑛〉 ≤ 1 

 

More general case (𝑘 > 2 or 𝜇 ≠ 0)… 

General 𝜇 ≠ 0 seems can not promise 〈𝑠𝑖𝑔𝑛〉 is finite large, one also need there is at least one 

zero energy ground state. Because we know space doubled situation always has zero energy ground 

state (Also described by (∆)𝑛|𝜓𝐸,1⟩⨂|𝜓𝐹,2⟩ with 𝐷 + 1 ground states), if there is no zero-energy 

ground state for original one, partition function will always decrease exponentially with temperature. 

While for spin-polarized valley-polarized TBG at chiral limit, there are 2 ground states, and after 

doubling we can construct two groups of independent ∆  like operators. Since for each ∆  like 

operator, it will give 
𝐷

2
+ 1  degenerate states, totally ground states after doubling should be 

(
𝐷

2
+ 1)

2
. 〈𝑠𝑖𝑔𝑛〉 ≥

4

𝐷+2
 in this case. The proof in detail is written below. 

𝐻𝐼 = ∑ 𝑉(𝑞)𝜌−𝑞𝜌𝑞

𝑞

= ∑ 𝑉(𝑞)𝜌𝑞
†𝜌𝑞

𝑞

 

𝜌𝑞 = ∑ 𝜆𝑖,𝑚,𝑗,𝑛(𝑞)𝑐𝑖,𝑚
† 𝑐𝑗,𝑛

𝑖,𝑗,𝑚,𝑛

−
1

2
𝜇 



Here 𝑚, 𝑛 are band indexes. 𝜆𝑖,𝑚,𝑗,𝑛(𝑞) = 𝜆𝑖,−𝑚,𝑗,−𝑛(𝑞) is true for chiral limit after gauge fixing. 

And we call 𝐻𝐼2 Hamiltonian after doubling. Define 

∆1
†= ∑ 𝑐

𝑖′,𝑚,1
† 𝑐𝑖′,𝑚,2

𝑖′,𝑚

 

∆2
†= ∑ 𝑐

𝑖′,𝑚,1
† 𝑐𝑖′,−𝑚,2

𝑖′,𝑚

 

One can see [∆1
†, 𝐻𝐼2] = [∆2

†, 𝐻𝐼2] = [∆1
† + ∆2

†, ∆1
† − ∆2

†] = [∆1
† + ∆2

†, ∆1 − ∆2] = 0. 

Then we can see two independent boson-like operators 𝐷1
† = ∆1

† + ∆2
†, 𝐷2

† = ∆1
† − ∆2

†
 . One can 

apply each operator 
𝐷

2
 times at most, so that (

𝐷

2
+ 1)

2
 ground states conclusion can be derived. 

 

 

 

Get 𝑍𝑟 = ∑ 𝑃(𝜙)|𝐷(𝜙)|{𝜙} = 〈|𝐷(𝜙)|〉 exactly… 

 

 

 


