This note is used to show how to derive linear and non-linear conductance from current-current correlation function.
(References are Mahan and BAB’s books)

First, we shall introduce our Hamiltonian in first-quantized form with periodic-perturbated electric field
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According to Schralinger equation, when choosing gauge V- A = 0, one can derive particle density and particle current
density
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This particle density and particle current density satisfy continuous equation
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Current density operator below can also be proved by directly comparing (/) and J(x,t)
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One can see interaction only influences wave function but not current density operator from this picture. Now let’s
transform it into lattice second-quantized picture, the general Hamiltonian H, in momentum space is
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After transforming charge density operator p; = c;f ¢; into momentum space p, =\/iﬁzk c;f +qCk» We can write down

continuous equation in momentum space

l_Z(th hk)ck+qck l[HO:pq] =19 Jjq
When q is small, we have Fourier transformed current den3|ty operator written as
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We can see again, interaction between particles will not mquence the form of current density operator, since we have not

considered vector potential for now, we use j to label this current density operator for distinguishing j for total current.
According to our first-quantized result, the average of current density operator is
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According to Taylor expansion, one should expect
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Since E(x,t) = o

, we simply choose A(x,t) = E - el@*~Wt) sg that E(x,t) = LTWE - el@x=wt) - After this gauge-

choosing step, term —— fo® A(x t)in{J(xt))is jUSt E el@x=wt) One only needs to compute (j(x,t)). We consider this



computation below in interaction picture.
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Here |y) is the state without perturbation H'(t). After expanding T [e‘if-tooH'(tl)dtl] up to the second order of H'(t)
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By noticing Zl Az(xl,t) fd,x Yi8(x —x;) - A%(x,t) = ;2 i2(ex-wt) \which commutes with any particle-

conserved operator and the left part in H'(t) is just — 212 (pi - A(x;, t) + A(x;,t) " py) = ——fdx] Alx,t) = —%-
jqe“'Wt, keeping linear E and EZ in the result, one finds for linear order
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For the second order -
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Compare these results with (J,(x,£)) = Xp 0o Eg(x,t) + X XapyEp(x, ) E, (x, t), we derive linear conductance
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And nonlinear conductance
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Now, we would like to compute a,(q, w) and x.g, (q, w) for a given single-particle-production state |1).

Let’s look at o, (g, w) first, we would like to derive Re (Gag (q, w)),
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Here we chose cl‘: La, @s creating operator for m, band with momentum k, + % in single-particle-production basis. Now
2 ;' 2

the Kinetic band is not necessarily diagonalized. Take ¢ — 0 and write {(c, .4 nl(t)c;Jrqn ) with equal time Green’s function
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Here g ,, is the excitation energy on band n, with momentum k and G, , (k) is a diagonal matrix representing

(Ck,nlc;cr,nﬁ- Now we can compute the integral f0°° dtete~i(ekna ekn)t by timing a converging term e ¢,
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We would like to derive this expression with § - 0, w — 0 according to L'H&ital's rule
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Let’s check the effectiveness of this expression now. It is straightforward to see there is no contribution from two occupied
bands or two empty bands, or the case « = . Then only Hall conductance from occupied and empty bands is hon-zero.
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Here n, means occupied bands and ng; means empty bands. It is interesting this expression is similar with Kubo formula in
Thouless’s paper. If it is the tight binding model without };; V;;, we can see g, = h; and the expression will degenerate to

the Thouless’s one where conductance is quantized by integrating Berry curvature.

After we have the knowledge above, we are ready to derive the lowest order nonlinear conductance.
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