Tight-binding Hamiltonian

First, we introduce the tight-binding Hamiltonian we use to describe K valley twisted TMD here following ‘Topological
Insulators in Twisted Transition Metal Dichalcogenide Homobilayers’ and ‘Spontaneous fractional Chern insulators in
transition metal dichalcogenides Moiré&superlattices’.
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Here, parameters (h— wy, w,¢,9) = (495meV, 8meV, —8.5meV, —89.6°,1.2°). After Fourier transformation, taking

27
2m*ag

topmost 7 bands, we plot energy dispersion below as the picture shown in MacDonald’s paper
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Flat band Hamiltonian with Coulomb interaction at half filling

Next, we project Coulomb interaction on top-most two bands and assume flat band limit at half filling. The Hamiltonian
now is
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Here Apnc(k k +q +G) = Yoty o (K)un 67 (k + g + G), up 67 (k + q + G) is the eigenvector of band n at
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momentum point k + q + G and valley t. T —

, here we take 8 = 1.2,¢, = 1,d = 2a,, for

computation for now. Again, we make a cut-off for momentum transfer g + G as the yellow points below (take 6 x 6
momentum points as an example)



By noticing a particle-hole symmetry, we can rewrite particle operator at valley —t as hole operator
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Here we redefine &, . = c_, —, S0 that
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Ground states, Single-particle excitations and correlations

Contrast with the case for Gamma valley, where there is a spin SU(2) symmetry, K valley freedom form a o, not g, so that

there is only a Z, symmetry. From pgi = SimnAmnz(e k + @+ G)(ch 1 cChrgnr = Ehm—rChtqmz), We can easily

find these two degenerate states [pF*")®|pFE!) and L™ )Q[PETP™). If one interprets ¢, . back t0 c_y,, _, these
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are two valley-polarized (spin-polarized) ground states [pF*")®[yp 7YY and [y ™PY )@ |pFutly.
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One can see the energy for exciting a particle at valley 7 on state [ 7™ )® | ¥4) is equal to the energy for exciting a

particle from empty, which can be achieved by diagonalizing H, in single-particle basis
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While excite a particle at valley — on state |pF“)® |y ) can be achieved by diagonalizing H_,
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This means single particle excitation & ;1 = €_y 1. Besides, one should notice there is another local C,, rotation
symmetry for H,(k,r). This rotation center is at middle point between K, and K; and can interchange two layers
H,(k,v) = o,H,(—k,—71)0,. According to this rotation, A,,,.(k,k+q+ G) = Ay n.(—k,—k — q — G) after choosing a
homogenous gauge. Finally, single particle excitation energy €y ;1 = €_p 11 = € -1 = E—k—11 = €k,1- We plot & 1 € -
for different momentum point k below
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Single particle correlation (Green’s function) at low temperature is easy to achieve
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This form is the same with the Gamma valley case.

Order parameter, gapped exciton excitations

Different with Gamma valley, this Z, symmetry can be broken with finite temperature fluctuation. And 0, 4, 0, , defined
below will give totally different results because of lacking SU(2).
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We also discuss this part according to g = 0 and q # 0 two cases.

When g = 0, [0,0, pg+¢] = 0 so that
(0,0(t)0,4(0)) =(0,,(0)0,,(0))
3 Tr(e PH0,40,,)
B Tr(e—AH)

lim 1
BI—IEOE 2(2N)?

= 4N?
This means spectrum should have at least one zero point at momentum p = 0. While [Ox,O:pq+G] # 0 and (0, (t)0y,,(0))
will decay exponentially with t or g — t.

When g # 0, [OZ,o,qu] # 0. For computing exciton excitations, one need
E t
[Hy, iy eChespmg | [0 Y@IPERH)

= Z V(g +G) Z[/‘ln,m_r(k, k+q+ ) Amm,e(k +q + G K)C  Corpmymz

q+G#0 mn

—2dnn-c(k+Dk+p+q+G)Anm,(k+q+G, k)c,1+q’m’rck+q+p,n,_r

+ Aym—c(k + D+ g+ Gk +P) Ay ek + D,k +D+q+ Gl Cospmc] Wz 7 )@ M)

= 2 V(g +G) Z[An,m,,(k, K+ q+ ) ek + @+ G K)C 1 Crorpmo

q+G#0 mn
2L nck+Dk+p+q+ G Amm (k+q+G, k)c,i+q’m‘rck+q+p,n,_r
+ Xk 4D+ g+ Gk +P) Ay ek + 0,k +p+q+ 6] Coapmor] e )@pFEL)
Empty

By noticing c,I_ml,TckJ,p,nlJll/JT )®|¢f’;“) always be zero if g #= 0, we only diagonalize

[Hy, € e Chipma—c) e 7 )@ F#1) and the result is shown below
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Here the blue line represents the lowest 10 c,I,ml'Tcker,nl,_T excitations with momentum p and red line represents single-

particle excitations with momentum p. Zoom in for observing the lowest two excitations, one will see figure below
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One can see exciton excitation is gapped (only two lowest excitations are plotted), though the gap is much smaller than
single particle’s gap.



