
Tight-binding Hamiltonian 

First, we introduce the tight-binding Hamiltonian we use to describe Gamma valley twisted TMD here following ‘Γ valley 

transition metal dichalcogenide moire bands’. 

𝐻𝑡 = −
ℏ2𝒌2

2𝑚∗
− ∑ 𝑉𝑠 ∑ 𝑒𝑖𝒈𝒋

𝒔⋅𝒓

6

𝑗=1𝑠

 

After Fourier transformation for moire potential, 

𝐻𝑡(𝑘) = − ∑
ℏ2(𝒌 + 𝑮)2

2𝑚∗
𝑐𝒌+𝑮

† 𝑐𝒌+𝑮

𝑮

− ∑ ∑ 𝑉𝑠 ∑ 𝑐𝒌+𝑮
† 𝑐𝒌+𝑮+𝒈𝒋

𝒔

6

𝑗=1𝑠𝑮

 

Here, parameter 𝜃 = 1.2°, 𝑉1 = 33.5, 𝑉2 = 4, 𝑉3 = 5.5, 𝑚∗ = 0.87𝑚𝑒, 𝑎0 = 0.318𝑛𝑚 , 𝒈𝒋
𝒔  are reciprocal lattice vector 

linking the ‘s’ nearest shell like below 

 

We choose cut-off of G points from Gamma point as below 

 

After diagonalization, we plot up-most 9 bands as the picture shown in MacDonald’s paper 

 

Flat band Hamiltonian with Coulomb interaction at half filling 

Next, we project Coulomb interaction on top-most two bands and assume flat band limit at half filling. The Hamiltonian 
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now is 

𝐻𝐼 =
1

2Ω
∑ 𝑉(𝑞 + 𝐺)𝜌𝑞+𝐺𝜌−𝑞−𝐺

𝑞+𝐺≠0

 

𝜌𝑞+𝐺 = ∑ 𝜆𝑚,𝑛(𝑘, 𝑘 + 𝑞 + 𝐺)(𝑐𝑘,𝑚,𝑠
† 𝑐𝑘+𝑞,𝑛,𝑠 + 𝑐𝑘,𝑚,−𝑠

† 𝑐𝑘+𝑞,𝑛,−𝑠 − 𝛿𝑞,0𝛿𝑚,𝑛)

𝑘,𝑚,𝑛

= 𝜌−𝑞−𝐺
†

 

Here 𝜆𝑚,𝑛(𝑘, 𝑘 + 𝑞 + 𝐺) ≡ ∑ 𝑢𝑚,𝐺′
∗ (𝑘)𝑢𝑛,𝐺′(𝑘 + 𝑞 + 𝐺)𝐺′ , 𝑢𝑛,𝐺′(𝑘 + 𝑞 + 𝐺) is the eigenvector of band n at momentum 

point 𝑘 + 𝑞 + 𝐺. 
𝑉(𝑞+𝐺)

Ω
≈

𝜃

𝜖𝑟𝑁𝑘

4𝜋

√3

tanh(𝑞⋅𝑑)

𝑞⋅𝑎𝑀
 , here we take 𝜃 = 1.2, 𝜖𝑟 = 1, 𝑑 = 2𝑎𝑀 for computation for now. Again, we 

make a cut-off for momentum transfer 𝑞 + 𝐺 as the yellow points below (take 6 × 6 momentum points as an example) 

 

Ground states, Single-particle excitations and correlations 

Here we introduce how we get ground states, single-particle excitations and correlations by noticing SU(2) symmetry for 

spin. First, one notice spin-polarize (SP) is one of degenerated ground states for this positive semidefinite Hamiltonian since 

𝜆𝑚,𝑚(𝑘, 𝑘) = 1 and 𝜌𝑞+𝐺|𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ = 0. Then we can define a raising operator Δ† = ∑ 𝑐𝑘,𝑚,𝑠

† 𝑐𝑘,𝑚,−𝑠𝑘,𝑚 , one can easily check 

[𝜌𝑞+𝐺 , Δ†] = 0 so that [𝐻𝐼, Δ†] = 0 and (Δ†)
𝑛

|𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ is also a ground state. Since here 𝑛 = 0,1,2, … ,2𝑁, there are 2𝑁 + 1 

degenerate ground states because of spin SU(2). 

 

One can see the energy for exciting a particle with spin 𝑠 on state |𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ is equal to the energy for exciting a particle from 

empty, which can be achieved by diagonalizing 𝐻𝐼 in single-particle basis 

𝐻𝐼 =
1

2Ω
∑ 𝑉(𝑞 + 𝐺) ∑ 𝜆𝑚,𝑛′(𝑘, 𝑘 + 𝑞 + 𝐺)𝜆𝑛′,𝑛(𝑘 + 𝑞 + 𝐺, 𝑘)𝑐𝑘,𝑚,𝑠

† 𝑐𝑘,𝑛,𝑠

𝑘,𝑚,𝑛,𝑛′𝑞+𝐺≠0

 

Then one finds one single-particle excitation state from |𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ with excitation energy 𝜀𝑘,1 is 𝑐𝑘,1,𝑠

† |𝜓−𝑠
𝐹𝑢𝑙𝑙⟩, 𝐻𝐼𝑐𝑘,1,𝑠

† |𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ =

𝜀𝑘,1𝑐𝑘,1,𝑠
† |𝜓−𝑠

𝐹𝑢𝑙𝑙⟩. And single-particle excitation from (Δ†)
𝑛

|𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ will have the same excitation energy 𝜀𝑘,1 since 

𝐻𝐼𝑐𝑘,1,𝑠
† (Δ†)

𝑛
|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ = (Δ†)
𝑛

𝐻𝐼𝑐𝑘,1,𝑠
† |𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ = 𝜀𝑘,1𝑐𝑘,1,𝑠
† (Δ†)

𝑛
|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩. Plot single-particle excitation (SE) for 6 × 6 

momentum points as an example 



 

 

Single-particle correlations (or single-particle Green’s functions) can also be achieved by normalizing all ground states and 

single-particle states. First, ⟨𝜓−𝑠
𝐹𝑢𝑙𝑙|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ = 1 so that |𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ is already normalized. Since [Δ, Δ†] = ∑ (𝑐𝑘,𝑚,−𝑠

† 𝑐𝑘,𝑚,−𝑠 −𝑘,𝑚

𝑐𝑘,𝑚,𝑠
† 𝑐𝑘,𝑚,𝑠) = �̂�−𝑠 − �̂�𝑠, ⟨𝜓−𝑠

𝐹𝑢𝑙𝑙|Δ𝑛(Δ†)
𝑛

|𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ = 𝑛(2𝑁 − 𝑛 + 1)⟨𝜓−𝑠

𝐹𝑢𝑙𝑙 |Δ𝑛−1(Δ†)
𝑛−1

| 𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ =

𝑛!(2𝑁)!

(2𝑁−𝑛)!
. Then we define 

normalized ground states |𝜓𝑛⟩ = √
(2𝑁−𝑛)!

𝑛!(2𝑁)!
(Δ†)

𝑛
|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩. For normalizing 𝑐𝑘,1,𝑠
† (Δ†)

𝑛
|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩, one notice Δ𝑐𝑘,1,𝑠
† |𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ = 0 

so that ⟨𝜓−𝑠
𝐹𝑢𝑙𝑙|𝑐𝑘,1,𝑠Δ𝑛(Δ†)

𝑛
𝑐𝑘,1,𝑠

† |𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ = 𝑛(2𝑁 − 𝑛)⟨𝜓−𝑠

𝐹𝑢𝑙𝑙 |𝑐𝑘,1,𝑠Δ𝑛−1(Δ†)
𝑛−1

𝑐𝑘,1,𝑠
† | 𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ =
𝑛!(2𝑁−1)!

(2𝑁−1−𝑛)!
. We define 

normalized single-particle excitation states |𝜓𝑛,𝑘,1⟩ = √
(2𝑁−1−𝑛)!

𝑛!(2𝑁−1)!
𝑐𝑘,1,𝑠

† (Δ†)
𝑛

|𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ = √

2𝑁

2𝑁−𝑛
𝑐𝑘,1,𝑠

† |𝜓𝑛⟩. At the same time, 

one can compute ⟨𝜓−𝑠
𝐹𝑢𝑙𝑙|Δ𝑛𝑐𝑘,1,𝑠

† 𝑐𝑘,1,𝑠(Δ†)
𝑛

|𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ = ⟨𝜓−𝑠

𝐹𝑢𝑙𝑙|Δ𝑛(Δ†)
𝑛

|𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ − ⟨𝜓−𝑠

𝐹𝑢𝑙𝑙|𝑐𝑘,1,𝑠Δ𝑛(Δ†)
𝑛

𝑐𝑘,1,𝑠
† |𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ =

𝑛!(2𝑁)!

(2𝑁−𝑛)!
−

𝑛!(2𝑁−1)!

(2𝑁−1−𝑛)!
=

𝑛!(2𝑁−1)!

(2𝑁−1−𝑛)!
(

𝑛

2𝑁−𝑛
), so that we can define |𝜓𝑛,𝑘,−1⟩ = √

(2𝑁−1−𝑛)!(2𝑁−𝑛)

𝑛!(2𝑁−1)!𝑛
𝑐𝑘,1,𝑠(Δ†)

𝑛
|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ =

√
2𝑁

𝑛
𝑐𝑘,1,𝑠|𝜓𝑛⟩. Now we are ready to write down single-particle correlations at low temperature limit 

𝐺𝑘,1,𝑠(𝜏) = 〈𝑐𝑘,1,𝑠(𝜏)𝑐𝑘,1,𝑠
† (0)〉 =

𝑇𝑟(𝑒−(𝛽−𝜏)𝐻𝑐𝑘,1,𝑠𝑒−𝜏𝐻𝑐𝑘,1,𝑠
† )

𝑇𝑟(𝑒−𝛽𝐻)
 

lim
𝛽→∞

=

1

2𝑁 + 1
 [∑ 𝑒−𝜏𝜀𝑘,1|⟨𝑐𝑘,1,𝑠

† 𝜓𝑛|𝜓𝑛,𝑘,1⟩|
2

𝑛

+ ∑ 𝑒−(𝛽−𝜏)𝜀𝑘,1|⟨𝜓𝑛,𝑘,−1|𝑐𝑘,1,𝑠𝜓𝑛⟩|
2

𝑛

] 

=
1

2𝑁 + 1
[𝑒−𝜏𝜀𝑘,1 ∑

2𝑁 − 𝑛

2𝑁
𝑛

+ 𝑒−(𝛽−𝜏)𝜀𝑘,1 ∑
𝑛

2𝑁
𝑛

] 

=
1

2
𝑒−𝜏𝜀𝑘,1 +

1

2
𝑒−(𝛽−𝜏)𝜀𝑘,1 

With the same spirit, 𝐺𝑘,2,𝑠(𝜏) =
1

2
𝑒−𝜏𝜀𝑘,2 +

1

2
𝑒−(𝛽−𝜏)𝜀𝑘,2. 

Order parameter, continuous exciton excitations 

For 2D system, we know SU(2) symmetry cannot spontaneously break so that there should be no magnetism. But magnet 

susceptibility is allowed. According to SU(2) symmetry, we define ‘order parameters’ 𝑂𝑥,𝑞 , 𝑂𝑧,𝑞 as below 

𝑂𝑥,𝑞 = ∑(𝑐𝑘,𝑚,𝑠
† 𝑐𝑘+𝑞,𝑚,−𝑠 + 𝑐𝑘,𝑚,−𝑠

† 𝑐𝑘+𝑞,𝑚,𝑠)

𝑘,𝑚

 



𝑂𝑧,𝑞 = ∑(𝑐𝑘,𝑚,𝑠
† 𝑐𝑘+𝑞,𝑚,𝑠 − 𝑐𝑘,𝑚,−𝑠

† 𝑐𝑘+𝑞,𝑚,−𝑠)

𝑘,𝑚

 

We discuss this part according to 𝑞 = 0 and 𝑞 ≠ 0 two cases. 

 

When 𝑞 = 0, one can check [𝑂𝑥,0, 𝜌𝑞+𝐺] = [𝑂𝑧,0, 𝜌𝑞+𝐺] = 0 so that [𝑂𝑥,0, 𝐻𝐼] = [𝑂𝑧,0, 𝐻𝐼] = 0. By noticing commutation 

relation [𝑂𝑥,0, Δ†] = −𝑂𝑧,0 = �̂�−𝑠 − �̂�𝑠, we can normalize state 𝑂𝑥,0(Δ†)
𝑛

|𝜓−𝑠
𝐹𝑢𝑙𝑙⟩ = 𝑛(2𝑁 − 𝑛 + 1)(Δ†)

𝑛−1
| 𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ +

(Δ†)
𝑛+1

|𝜓−𝑠
𝐹𝑢𝑙𝑙⟩. That will be 𝑂𝑥,0|𝜓𝑛⟩ = √𝑛(2𝑁 − 𝑛 + 1)|𝜓𝑛−1⟩ + √(𝑛 + 1)(2𝑁 − 𝑛)|𝜓𝑛+1⟩. Combine all results above, 

we can see the excitation defined by 𝑂𝑥,0 at low temperature limit should be 

〈𝑂𝑥,0(𝜏)𝑂𝑥,0(0)〉 = 〈𝑂𝑥,0(0)𝑂𝑥,0(0)〉 

=
𝑇𝑟(𝑒−𝛽𝐻𝑂𝑥,0𝑂𝑥,0)

𝑇𝑟(𝑒−𝛽𝐻)
 

lim
𝛽→∞

=

1

2𝑁 + 1
 ∑⟨𝜓𝑛|𝑂𝑥,0𝑂𝑥,0|𝜓𝑛⟩

𝑛

 

=
2

2𝑁 + 1
∑ 𝑛(2𝑁 − 𝑛 + 1)

𝑛

 

=
2𝑁(2𝑁 + 2)

3
 

At the same time, 〈𝑂𝑧,0(𝜏)𝑂𝑧,0(0)〉 at low temperature limit can also be easily calculated 

〈𝑂𝑧,0(𝜏)𝑂𝑧,0(0)〉 = 〈𝑂𝑧,0(0)𝑂𝑧,0(0)〉 

=
𝑇𝑟(𝑒−𝛽𝐻𝑂𝑧,0𝑂𝑧,0)

𝑇𝑟(𝑒−𝛽𝐻)
 

lim
𝛽→∞

=

1

2𝑁 + 1
 ∑(2𝑁 − 2𝑛)2

𝑛

  

=
2𝑁(2𝑁 + 2)

3
 

One can see 〈𝑂𝑥,0(𝜏)𝑂𝑥,0(0)〉 = 〈𝑂𝑧,0(𝜏)𝑂𝑧,0(0)〉 and both do not decay with 𝜏, which should be a natural result from SU(2) 

symmetry. 

 

When 𝑞 ≠ 0, one can check [𝑂𝑥,𝑞 , 𝐻𝐼] ≠ 0, [𝑂𝑧,𝑞 , 𝐻𝐼] ≠ 0 generally, so that 〈𝑂𝑥,𝑞(𝜏)𝑂𝑥,𝑞(0)〉 and 〈𝑂𝑧,𝑞(𝜏)𝑂𝑧,𝑞(0)〉 will 

decay with 𝜏 (But it seems it is not the case in this single band model, maybe one need a better tight-binding model). 

Anyway, the steps below are general and can be applied when there is a better model. First, one can see for 𝑝 ≠ 0, 

⟨𝜓−𝑠
𝐹𝑢𝑙𝑙|Δ𝑛𝑐𝑘2+𝑝,𝑛2,𝑠2

† 𝑐𝑘2,𝑚2,𝑠1
𝑐𝑘1,𝑚1,𝑠1

† 𝑐𝑘1+𝑝,𝑛1,𝑠2
(Δ†)

𝑛
|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ = 𝛿𝑘1,𝑘2
𝛿𝑚1,𝑚2

𝛿𝑛1,𝑛2
𝐴, which means 

𝑐𝑘,𝑚1,𝑠1

† 𝑐𝑘+𝑝,𝑛1,𝑠2
(Δ†)

𝑛
|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ can form a group of orthogonal basis. Of course, one can derive Green’s function by 

computing 𝐴 here like what we have done in single-particle case, we will not discuss this part since there should be lots of 

exponential components at a single momentum 𝑝 for 𝑂𝑥,𝑞 or 𝑂𝑧,𝑞 generally (Again, not the case here where  [𝑂𝑥,𝑞, 𝐻𝐼] ≈

0, [𝑂𝑧,𝑞 , 𝐻𝐼] ≈ 0 because of 𝜆𝑚,𝑛(𝑘 + 𝑝, 𝑘 + 𝑝 + 𝑞 + 𝐺) ≈ 𝜆𝑚,𝑛(𝑘, 𝑘 + 𝑞 + 𝐺)). By computing 

[𝐻𝐼 , 𝑐𝑘,𝑚1,𝑠
† 𝑐𝑘+𝑝,𝑛1,−𝑠](Δ†)

𝑛
|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ 

= ∑ 𝑉(𝑞 + 𝐺) ∑[𝜆𝑛,𝑚(𝑘, 𝑘 + 𝑞 + 𝐺)𝜆𝑚,𝑚1
(𝑘 + 𝑞 + 𝐺, 𝑘)𝑐𝑘,𝑛,𝑠

† 𝑐𝑘+𝑝,𝑛1,−𝑠

𝑚,𝑛𝑞+𝐺≠0

− 2𝜆𝑛1,𝑛(𝑘 + 𝑝, 𝑘 + 𝑝 + 𝑞 + 𝐺)𝜆𝑚,𝑚1
(𝑘 + 𝑞 + 𝐺, 𝑘)𝑐𝑘+𝑞,𝑚,𝑠

† 𝑐𝑘+𝑞+𝑝,𝑛,−𝑠

+ 𝜆𝑛,𝑚(𝑘 + 𝑝 + 𝑞 + 𝐺, 𝑘 + 𝑝)𝜆𝑛1,𝑛(𝑘 + 𝑝, 𝑘 + 𝑝 + 𝑞 + 𝐺)𝑐𝑘,𝑚1,𝑠
† 𝑐𝑘+𝑝,𝑚,−𝑠] (Δ†)

𝑛
|𝜓−𝑠

𝐹𝑢𝑙𝑙⟩ 

one can diagonalize and derive exciton excitations with different momentum 𝑝 



 

Here the blue line represents the lowest 10 𝑐𝑘,𝑚1,𝑠1

† 𝑐𝑘+𝑝,𝑛1,𝑠2
 excitations with momentum 𝑝 and red line represents single-

particle excitations with momentum 𝑝. Zoom in for observing the lowest two excitations, one will see figure below 

 

Contrast with TBG at chiral limit with neutral filling below, one can see different 𝑝 all have almost zero-energy excitations. 

This result comes from 𝜆𝑚,𝑛(𝑘 + 𝑝, 𝑘 + 𝑝 + 𝑞 + 𝐺) ≈ 𝜆𝑚,𝑛(𝑘, 𝑘 + 𝑞 + 𝐺), which is the result we only fold one band to 

form moire flat band and wavefunctions of this band are very similar at little moire dispersion region. 

 

 


