Q1: What is conformal transformation?

Al: Coordinate transformation preserving angle.
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QZ: For minimal conformal transformation x# — x'* = x* + e* in flat space, which requirements must be there for e#?

AZ2: For flat space,
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Since we require line element must be unchanged by any coordinate transformation, after a minimal coordinate transformation x# — x'# = x* + e#(x) we have
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For infinitesimal €#, now we have

|au6v + aveu = f(x)guv|

Use g¥ contracts all indexes,
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Here D is dimension of g,,,,. Besides, we apply d, to both side of d,€, + d,€, = f(x) g,
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Use g contracts all indexes,
20%¢, = (2 - D)0, f
Apply 9, for 20%¢, = (2 — D)d,f, and 8% for d,€, + d,€, = f(X) gy
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Again, use g*¥ contracts all indexes,

(0 - 1Dd*f =0
It is very interesting that for D > 1, there must be 9f = 0, so that (2 — D)d,d,f = 0. Again, if D > 2, one more limitation 9,0, f = 0 means f(x) = A 4+ B,x“. Finally, we require

‘e“ = a + bH x* + c“ByxﬁxV‘

Here according to symmetry, ¢, = c* ;. Let’s discuss those coefficients in detail.
1. For a*, one can see it is just infinitesimal translation.
2. For b* x*, according to d,€, + d,€, = f(x) g,
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This means b, has two parts, one for diagonal elements and the other for off-diagonal anti-symmetrical elements b, = 19,4 + M,q. Here my,, = —m,,. One can see Ax* is

by, + by, =

for infinitesimal dilatation and m*,x* is for infinitesimal rotation.

3. Finally, for ¢*; xPx?, according to d,€, + dy€, = f(X)guo
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Here we just define d, = c;‘”. One can see after this infinitesimal ‘special conformal transformation’ (SCT), x'# = x# + C”Byxﬂxy = xH +2d,x¥x* — d”xﬁxﬁ =xH* 4+

2(d - x)x* — dH*x?

QQ3: Can we find generate operators according to infinitesimal conformal transformation?

A3: Yes. The construction is straightforward. Since after infinitesimal transformation, we have x'* = eifx# = x* 4 itx*

For translation, T = —ia%d,.

For rotation (boost), T = —im“ﬁxﬁaa. Here m%; = —m,“*.

For dilatation, T = —ilx%0d,

For special conformal transformation, £ = —id®(2x,x#dp — x2d,)
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Q4: Can we find finite conformal transformation according to generators we derive?

AA4: Yes. Just expand ei® = Z;’{’:O% (it)™ and apply it to x*.
1. For translation, x"* = eTx# = x* + q#
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2. For rotation (boost), x'# = efx# = ™ BxF

3. For dilatation, x'* = eiTx# = eAx#
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4. For special conformal transformation, it is not so straightforward. We can define x""* = z—zfirst, so that x"% = x—lz and x* = ’;7 Then one can see T = —id“(Zxaxﬁaﬁ —
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One can see e'Tx"* = x"* — ¥, which means = = = — dH. By noticing — = — + d? — 2 =2, we finally have x'# = eifx# = =X
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Q5: Is there any straightforward understanding about special conformal transformation?
AD: Yes. Below, we can see SCT is just two discrete inversions inserted a translation between.

First, we will prove discrete inversion x'# = ’;—2 is also a conformal transformation, which means we need prove

ax'* ax'?
Q(x)gap (X)WW = Guv(x)
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So that here Q(x) = x*, x'# = i—z is also a conformal transformation.

Now, we follow ‘inversion-translation-inversion’ steps
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Inversion: x'* = =
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Translation: x""* = x'* — g
xH
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QG6: What is “primary field’? What does the correlation function look like for primary field?

AB: The most straightforward definition of ‘primary field” is the field under conformal transformation changes like
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Here A is so called scaling dimension of the field ¢ (x), Jacobian determinant |%| can be expressed by Q(x) according to Q(x) gep(x) %% = G ():
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Then according to conformal transformation, we can see for primary field
Ay Ay
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(P1(x1) P2 (x2)) = ox . ax i, (1 (x1)P2(x3))

As we all know, Jacobian determinant for translation or rotation (boost) is equal to 1, so that this will give a limitation (¢;(x;)$,(x2)) = f(|x; — x,|). For dilatation,

(1 (x1) P2 (xx2)) = A81782(¢p; (Ax1) p,(Ax,)), so that this give one more limitation f(|x; — x,|) = 221282 f(A|x; — x,[). This actually means [(¢; (x1),(x,)) =

diz
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d,, has nothing to do with x4, x, and is only determined by ¢, ¢.

Finally, for SCT, we would like to derive Jacobian determinant |Z—’:| first, which follows ‘three steps’ way in A5.
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Then one can see SCT requires

, here
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Since this equation is true for any SCT y, so we requwe = A; which means A; = A,, or (¢, (x1) P, (x;)) = 0 for A; # A,.

Similarly, we can see three-point correlation (¢, (x1) ¢, (x2)Pp3(x3)) = f(lx1 — x5, |x2 — x31, |2, — x3]) by translation and rotation (boost), and f(|x; — x5, |x2 — x5, 1%, — x3]) =
ABa+8e+ls £ Q1% — x,], Alx, — x3], Alx; — x3|) by dilatation. Without SCT, we require
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(1 (x1) P2 (x2) P3(x3)) = 123

g — x2]%[x, — x3|P ]2 — x3¢

Herea + b+ c = A, + A, + A3, Cy,3 is only determined by ¢4, ¢, ¢5.
SCT again gives limitation
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Thisrequiresa + c = 2A;,a+ b = 2A, and b + ¢ = 2A;, whichmeansa = A} + A, — A3, b = A, + A; — A; and ¢ = A, + A; — A,. Explicitly,
C123
<¢1 (x1)¢2 (x2)¢3 (x3)> - |x1 _ le(A1+A2)—A3 |x2 _ x3|(A2+A3)—A1 |x1 _ x3|(A1+A3)—A2
For four-point correlation, one can see —222% and —:223% (rij = |x; — x;|) are also unchanged under all conformal transformation. So, four-point correlation form cannot be determined
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only by conformal symmetry. Generally, it should have the form (¢, ()P, (x2) P3(x3)Psa(x,)) = F

—r herea+b+c+d+e+f =40+, +43+
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Ajanda+b+c=2A, a+d+e=2A,,b+d+f=2A;,c+e+ f=2A,. Since we cannot determine 6 variables by 4 independent equations, there is also freedom for
coefficients.



