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Introduction with 2D square lattice 

 

We would like to solve a 2D Ising model in square lattice first. The Hamiltonian of this model 

is, (Assuming 𝐽1, 𝐽2 > 0) 

𝐻 = −∑∑(𝐽1𝜎𝑖,𝑗
𝑧 𝜎𝑖+1,𝑗

𝑧 + 𝐽2𝜎𝑖,𝑗
𝑧 𝜎𝑖,𝑗+1

𝑧 )

𝑛

𝑗=1

𝑚

𝑖=1

 

Since we would like to see thermodynamical property like temperature of phase transition of 

this model. We need to find out the expression of partition function, which is, 

𝑍 = ∑ 𝑒−𝛽𝐻

{𝜎𝑧}

 

By rewriting 𝐾𝑖 = 𝛽𝐽𝑖, we have 

𝑍 = ∑ ∏𝑒∑ (𝐾1𝜎𝑖,𝑗
𝑧 𝜎𝑖+1,𝑗

𝑧𝑛
𝑗=1 +𝐾2𝜎𝑖,𝑗

𝑧 𝜎𝑖,𝑗+1
𝑧 )

𝑚

𝑖=1{𝜎𝑧}

 

The reason we write partition function in this way is we want to separate index m out as a 

contracted index of matrixes and reduce this dimension by transfer matrix method, 

𝑍 = ∑ ⟨1|𝑒∑ (𝐾1𝜎1,𝑗
𝑧 𝜎2,𝑗

𝑧𝑛
𝑗=1 +𝐾2𝜎1,𝑗

𝑧 𝜎1,𝑗+1
𝑧 )|2⟩

{𝜎𝑧}

 

     ∙ ⟨2|𝑒∑ (𝐾1𝜎2,𝑗
𝑧 𝜎3,𝑗

𝑧𝑛
𝑗=1 +𝐾2𝜎2,𝑗

𝑧 𝜎2,𝑗+1
𝑧 )|3⟩ 

     ⋯ 

     ∙ ⟨𝑚|⋯ |1⟩ 

(For convenient, we use periodical boundary condition in this direction. As for other boundary 

condition, the result should be similar as we get below) 

 

Here ⟨1|𝐴12|2⟩ means elements of matrix 𝐴12 can be determined by 2𝑛 × 2𝑛 combinations 

of variables 𝜎1,𝑗
𝑧  and 𝜎2,𝑗

𝑧 . 

 

If we define 2𝑛 × 2𝑛 matrixes 𝑉1, 𝑉2 as below, 

𝑉1 = 𝑒∑ 𝐾1𝜎𝑗
𝑧𝜎′

𝑗
𝑧𝑛

𝑗=1  

𝑉2 = 𝑒∑ 𝐾2𝜎𝑗
𝑧𝜎𝑗+1

𝑧𝑛
𝑗=1 ∏𝛿

𝜎𝑖
𝑧,𝜎′

𝑖
𝑧

𝑛

𝑖=1

 

 

We can rewrite partition function in a simple way, 



𝑍 = 𝑇𝑟[(𝑉1𝑉2)
𝑚] 

Now this problem become much easier to solve. Just notice that, the trace of one matrix does 

not change after we diagonalize this matrix. What we need to do for next step is diagonalize 

matrix 𝑉1𝑉2, and 𝑍 = ∑ 𝜆𝑖
𝑚2𝑛

𝑖=1 .(Here 𝜆𝑖 is the eigenvalue of 𝑉1𝑉2 labeled by 𝑖) 

 

Diagonalization 

 

Before we diagonalize the product of those 2 matrixes, we would like to study those matrixes 

one by one. Since the matrix which can diagonalize 𝑒𝐴 is just the matrix that diagonalize 𝐴, 

we will focus on exponential part of each 𝑉𝑖 matrix. 

 

Here we use a small trick, 

𝑒𝐾𝜎𝑗
𝑧𝜎′

𝑗
𝑧

= [ 𝑒𝐾 𝑒−𝐾

𝑒−𝐾 𝑒𝐾 ] = [
𝐴𝑐𝑜𝑠ℎ(𝐾∗) 𝐴𝑠𝑖𝑛ℎ(𝐾∗)
𝐴𝑠𝑖𝑛ℎ(𝐾∗) 𝐴𝑐𝑜𝑠ℎ(𝐾∗)

] = 𝐴𝑒𝐾∗𝜎𝑗
𝑥

 

To make this equation correct, there are two relations needs to be satisfied, 

tanh(𝐾∗) = 𝑒−2𝐾 

𝐴 =
𝑒𝐾

cosh (𝐾∗)
=

𝑒−𝐾

sinh (𝐾∗)
= √

2

sinh (2𝐾∗)
= √2sinh (2𝐾) 

We see the exponential part of 𝑉𝑖 matrixes as Hamiltonians, by using the trick we introduced 

above, those 2 Hamiltonian are, 

𝐻1 = ∑𝐾1
∗𝜎𝑗

𝑥

𝑛

𝑗=1

 

𝐻2 = ∑𝐾2𝜎𝑗
𝑧𝜎𝑗+1

𝑧

𝑛

𝑗=1

 

Remember we should try our best to diagonalize them in the same basis. We will use Jordan 

Wigner transformation, Fourier transformation and Bogoliubov transformation to do this job. 

 

According to routine of Jordan Wigner transformation, we define, 

𝑆− = [
0 0
1 0

] 

𝑆+ = [
0 1
0 0

] 

This definition will make, 

𝑆+ [
0
1
] = [

1
0
] 

𝑆− [
1
0
] = [

0
1
] 

𝑆+ [
1
0
] = 0 



𝑆− [
0
1
] = 0 

Besides, in basis diagonalize 𝜎𝑥 , 

𝜎𝑥 = [
1 0
0 −1

] = 1 − 2𝑆−𝑆+ 

𝜎𝑧 = [
0 1
1 0

] = 𝑆− + 𝑆+ 

It is easy to prove by using matrix form, 

𝑆−𝜎𝑥 = [
0 0
1 0

] = −𝜎𝑥𝑆− 

𝑆+𝜎𝑥 = [
0 −1
0 0

] = −𝜎𝑥𝑆+ 

𝑆−𝑆+ + 𝑆+𝑆− = [
1 0
0 1

] 

𝑆−𝑆− = 𝑆+𝑆+ = 0 

This means that, now we have two groups of field operator {𝜎𝑥}, {𝑆−, 𝑆+}. For group {𝜎𝑥}, 

they are totally bosonic. For group {𝑆−, 𝑆+} , they are locally fermionic and bosonic for 

different sites. By noticing operators between those groups have local fermionic relationship, 

we can rebuild a group containing pure fermionic operators. 

𝑐𝑖
† = ∏𝜎𝑙

𝑥

𝑙<𝑖

𝑆𝑖
+ 

𝑐𝑗 = ∏𝜎𝑘
𝑥

𝑘<𝑗

𝑆𝑗
−  

It is easy to verify {𝑐†, 𝑐}  is a group of fermionic operators by verify anticommutation 

relationship. 

 

Of course, we can also describe  {𝑆−, 𝑆+} by {𝑐†, 𝑐} and {𝜎𝑥}, 

𝑆𝑖
+ = ∏𝜎𝑙

𝑥

𝑙<𝑖

𝑐𝑖
†
 

𝑆𝑗
− = ∏𝜎𝑘

𝑥

𝑘<𝑗

𝑐𝑗 

Now we can rewrite our bosonic Hamiltonians by pure fermionic operators. 

𝐻1 = ∑[2𝐾1
∗(𝑐𝑗

†𝑐𝑗 −
1

2
)]

𝑛

𝑗=1

 

𝐻2 = ∑[𝐾2(𝑐𝑗
†𝑐𝑗+1 + 𝑐𝑗+1

† 𝑐𝑗 + 𝑐𝑗
†𝑐𝑗+1

† + 𝑐𝑗+1𝑐𝑗)]

𝑛

𝑗=1

 

For Hamiltonian 1, it is already diagonalized. But for 2, it is not the case. 

 



So, we need do Fourier transformation to all of them. The transformation relationship can be 

written below, 

𝑐𝑗 =
1

√𝑛
∑𝑒𝑖𝑘𝑥𝑗𝑐𝑘

𝑘

 

𝑐𝑗
† =

1

√𝑛
∑𝑒−𝑖𝑘𝑥𝑗𝑐𝑘

†

𝑘

 

After Fourier transformation, those Hamiltonians are, 

𝐻1 = ∑2𝐾1
∗(𝑐𝑘

†𝑐𝑘 + 𝑐−𝑘
† 𝑐−𝑘 − 1)

|𝑘|

 

𝐻2 = ∑[2𝐾2(cos (𝑘)(𝑐𝑘
†𝑐𝑘 + 𝑐−𝑘

† 𝑐−𝑘) + 𝑖𝑠𝑖𝑛(𝑘)(𝑐𝑘
†𝑐−𝑘

† − 𝑐−𝑘𝑐𝑘))]
|𝑘|

 

We notice that for those Hamiltonians, if we combine 𝑘 and −𝑘 terms together, they will all 

be partially diagonalized according to |𝑘|. We would write partially diagonalized parts of those 

Hamiltonians in 2 × 2 matrixes with single particle basis below, 

[𝑐𝑘
† 𝑐−𝑘]𝐻(|𝑘|)𝑖 [

𝑐𝑘

𝑐−𝑘
† ] 

Now, 𝐻(|𝑘|)𝑖 in matrix form are, 

𝐻(|𝑘|)1 = 2𝐾1
∗ [

1 0
0 −1

] 

𝐻(|𝑘|)2 = 2𝐾2([
cos (𝑘) 𝑖 ∙ sin (𝑘)

−𝑖 ∙ sin (𝑘) −cos (𝑘)
] + cos (𝑘)) 

And 𝑉(|𝑘|)1 = 𝑒𝐻(|𝑘|)1 , 𝑉(|𝑘|)2 = 𝑒𝐻(|𝑘|)2 , 

𝑉(|𝑘|)1 = [𝑒
2𝐾1

∗
0

0 𝑒−2𝐾1
∗] 

𝑉(|𝑘|)2 = 𝑒2𝐾2cos (𝑘) [
cosh(2𝐾2) + sinh (2𝐾2)cos (𝑘) 𝑖 ∙ sinh (2𝐾2)sin (𝑘)

−𝑖 ∙ sinh (2𝐾2)sin (𝑘) cosh(2𝐾2) − sinh (2𝐾2)cos (𝑘)
] 

Then we will diagonalize 𝑉(|𝑘|)1𝑉(|𝑘|)2. 

(𝐴 − 𝐸)(𝐶 − 𝐸) = 𝐵 

𝐸 =
(𝐴 + 𝐶) ± √(𝐴 + 𝐶)2 − 4(𝐴𝐶 − 𝐵)

2
  

Here, 

𝐴 = 𝑒2𝐾1
∗
(cosh(2𝐾2) + sinh(2𝐾2) cos(𝑘)) 

𝐵 = (sinh(2𝐾2) sin(𝑘))2 

𝐶 = 𝑒−2𝐾1
∗
(cosh(2𝐾2) − sinh (2𝐾2)cos (𝑘)) 

We notice that, 

𝐴𝐶 − 𝐵 = 1 

𝐴 + 𝐶 = 2 cosh(2𝐾1
∗) cosh(2𝐾2) + 2 sinh(2𝐾1

∗) sinh(2𝐾2) cos(𝑘) ≥ 2 

So, there are two positive eigenvalues, we assume they are 𝐸1 = 𝑒𝜀1 , 𝐸2 = 𝑒𝜀2. The reason we 

do that is now we diagonalized this matrix in single particle basis. And now we want to get the 

eigenvalues in many-particle basis. Remember for a certain one-particle Hamiltonian operator, 



many-particle eigenvalues are just different pluses between single particle eigenvalues. Now 

the one-particle Hamiltonian operator is in exponential part, so eigenvalues in many-particle 

basis should be products between different single particle eigenvalues. 

 

By noticing 𝐸1 ∙ 𝐸2 = 1, we have 4 eigenvalues of 𝑉(|𝑘|)1𝑉(|𝑘|)2 in many-particle basis, 

𝐸1− = 𝑒2𝐾2 cos(𝑘)𝑒−𝜀𝑘  

𝐸0 = 𝑒2𝐾2 cos(𝑘) 

𝐸2 = 𝑒2𝐾2 cos(𝑘) 

𝐸1+ = 𝑒2𝐾2 cos(𝑘)𝑒𝜀𝑘 

Here, 𝑐𝑜𝑠ℎ(𝜀𝑘) =
𝐸1+𝐸2

2
=

𝐴+𝐶

2
= cosh(2𝐾1

∗) cosh(2𝐾2) + sinh(2𝐾1
∗) sinh(2𝐾2) cos(𝑘) . 

𝐸1−, 𝐸0, 𝐸2, 𝐸1+represent eigenvalues of 1, 0, 2, 1 particle respectively. 

 

Now, finally we can express the partition function we write from very beginning explicitly. 

𝑍 = 𝑇𝑟((𝑉1𝑉2)
𝑚) 

    = lim
𝑚→∞

𝜆𝑚𝑎𝑥
𝑚  

    = lim
𝑚→∞

((2 sinh(2𝐾1))
𝑛
2𝑒∑ (2𝐾2 cos(𝑘)+𝜀𝑘)|𝑘| )

𝑚

 

    = lim
𝑛→∞

lim
𝑚→∞

((2 sinh(2𝐾1))
𝑛
2𝑒

𝑛
2𝜋∫ (2𝐾2 cos(𝑘)+𝜀𝑘)𝑑𝑘

𝜋
0 )

𝑚

 

If we write down free energy per-site, we have 

𝐹 = −𝑘𝑇
ln(𝑍)

𝑚𝑛
 

    = −𝑘𝑇[
1

2
ln(2 sinh(2𝐾1)) +

1

2𝜋
∫ 𝜀𝑘𝑑𝑘

𝜋

0

] 

By using identical condition, 

𝜀𝑘 =
1

𝜋
∫ ln (2 cosh(𝜀𝑘) + 2cos (𝑤))𝑑𝑤

𝜋

0

 

The expression of 𝐹 by using 𝐾1, 𝐾2 is, 

𝐹 = −𝑘𝑇{ln (2) 

    +
1

2𝜋2
∫ ∫ ln [cosh(2𝐾1) cosh(2𝐾2) + sinh(2𝐾2) cos(𝑘) + sinh(2𝐾1) cos(𝑤)]

𝜋

0

𝑑𝑘𝑑𝑤
𝜋

0

} 

 

 

2D Honeycomb Lattice 

 

 

 

 

 

 

 

 

 1       2           3       4           5 

4 

 

3 

 

2 

 

1 

𝐽3  

𝐽2  

𝐽1  

2m 

2n 

P. 1 



Now we would like to solve an 2D Ising model in honeycomb lattice shown in P.1, whose 

Hamiltonian is, (Assuming 𝐽1, 𝐽2, 𝐽3 > 0) 

𝐻 = −∑∑(𝐽1𝜎2𝑖,2𝑗−1
𝑧 𝜎2𝑖+1,2𝑗−1

𝑧 + 𝐽1𝜎2𝑖−1,2𝑗
𝑧 𝜎2𝑖,2𝑗

𝑧

𝑛

𝑗=1

𝑚

𝑖=1

 

     +𝐽2𝜎2𝑖−1,2𝑗−1
𝑧 𝜎2𝑖,2𝑗−1

𝑧 + 𝐽2𝜎2𝑖,2𝑗
𝑧 𝜎2𝑖+1,2𝑗

𝑧  

     +𝐽3𝜎2𝑖−1,2𝑗−1
𝑧 𝜎2𝑖−1,2𝑗

𝑧 + 𝐽3𝜎2𝑖,2𝑗
𝑧 𝜎2𝑖,2𝑗+1

𝑧 ) 

The main method is similar with the one above. Partition function is, 

𝑍 = ∑ 𝑒−𝛽𝐻

{𝜎𝑧}

 

By rewriting 𝐾𝑖 = 𝛽𝐽𝑖, we have 

𝑍 = ∑ ⟨1|𝑒∑ (𝐾1𝜎1,2𝑗
𝑧 𝜎2,2𝑗

𝑧𝑛
𝑗=1 +𝐾2𝜎1,2𝑗−1

𝑧 𝜎2,2𝑗−1
𝑧 +𝐾3𝜎1,2𝑗−1

𝑧 𝜎1,2𝑗
𝑧 )|2⟩

{𝜎𝑧}

 

     ∙ ⟨2|𝑒∑ (𝐾1𝜎2,2𝑗−1
𝑧 𝜎3,2𝑗−1

𝑧𝑛
𝑗=1 +𝐾2𝜎2,2𝑗

𝑧 𝜎3,2𝑗
𝑧 +𝐾3𝜎2,2𝑗

𝑧 𝜎2,2𝑗+1
𝑧 )|3⟩ 

     ⋯ 

     ∙ ⟨2𝑚|⋯ |1⟩ 

Here ⟨1|𝐴12|2⟩  means elements of matrix 𝐴12  can be determined by 22𝑛 × 22𝑛 

combinations of variables 𝜎1,𝑗
𝑧  and 𝜎2,𝑗

𝑧 . 

 

If we define 22𝑛 × 22𝑛 matrixes 𝑉1, 𝑉2, 𝑉3 and 𝑉4 as below, 

𝑉1 = 𝑒∑ (𝐾1𝜎2𝑗
𝑧 𝜎′

2𝑗
𝑧𝑛

𝑗=1 +𝐾2𝜎2𝑗−1
𝑧 𝜎′

2𝑗−1
𝑧

) 

𝑉2 = 𝑒∑ 𝐾3𝜎2𝑗−1
𝑧 𝜎2𝑗

𝑧𝑛
𝑗=1 ∏𝛿

𝜎𝑖
𝑧,𝜎′

𝑖
𝑧

2𝑛

𝑖=1

 

𝑉3 = 𝑒∑ (𝐾1𝜎2𝑗−1
𝑧 𝜎′

2𝑗−1
𝑧𝑛

𝑗=1 +𝐾2𝜎2𝑗
𝑧 𝜎′

2𝑗
𝑧

) 

𝑉4 = 𝑒∑ 𝐾3𝜎2𝑗
𝑧 𝜎2𝑗+1

𝑧𝑛
𝑗=1 ∏𝛿

𝜎𝑖
𝑧,𝜎′

𝑖
𝑧

2𝑛

𝑖=1

 

We can rewrite partition function in a simple way, 

𝑍 = 𝑇𝑟[(𝑉1𝑉2𝑉3𝑉4)
𝑚] 

What we need to do for next step is diagonalize matrix 𝑉1𝑉2𝑉3𝑉4, and 𝑍 = ∑ 𝜆𝑖
𝑚22𝑛

𝑖=1 .(Here 𝜆𝑖 

is the eigenvalue of 𝑉1𝑉2𝑉3𝑉4 labeled by 𝑖) 

 

We see the exponential part of 𝑉𝑖 matrixes as Hamiltonians, by using the trick we introduced 

above again, those 4 Hamiltonian are, 



𝐻1 = ∑(𝐾1
∗𝜎2𝑗

𝑥

𝑛

𝑗=1

+ 𝐾2
∗𝜎2𝑗−1

𝑥 ) 

𝐻2 = ∑𝐾3𝜎2𝑗−1
𝑧 𝜎2𝑗

𝑧

𝑛

𝑗=1

 

𝐻3 = ∑(𝐾1
∗𝜎2𝑗−1

𝑥

𝑛

𝑗=1

+ 𝐾2
∗𝜎2𝑗

𝑥 ) 

𝐻4 = ∑𝐾3𝜎2𝑗
𝑧 𝜎2𝑗+1

𝑧

𝑛

𝑗=1

 

And those Hamiltonians just describe models shown in P.2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here blue points and lines show interactions. Now we rewrite our bosonic Hamiltonians by 

pure fermionic operators. 

𝐻1 = ∑[2𝐾1
∗𝑐2𝑗

† 𝑐2𝑗 + 2𝐾2
∗𝑐2𝑗−1

† 𝑐2𝑗−1 − 𝐾1
∗ − 𝐾2

∗]

𝑛

𝑗=1

 

𝐻2 = ∑[𝐾3(𝑐2𝑗−1
† 𝑐2𝑗 + 𝑐2𝑗

† 𝑐2𝑗−1 + 𝑐2𝑗−1
† 𝑐2𝑗

† + 𝑐2𝑗𝑐2𝑗−1)]

𝑛

𝑗=1

 

𝐻3 = ∑[2𝐾2
∗𝑐2𝑗

† 𝑐2𝑗 + 2𝐾1
∗𝑐2𝑗−1

† 𝑐2𝑗−1 − 𝐾1
∗ − 𝐾2

∗]

𝑛

𝑗=1

 

𝐻4 = ∑[𝐾3(𝑐2𝑗
† 𝑐2𝑗+1 + 𝑐2𝑗+1

† 𝑐2𝑗 + 𝑐2𝑗
† 𝑐2𝑗+1

† + 𝑐2𝑗+1𝑐2𝑗)]

𝑛

𝑗=1

 

For Hamiltonian 1 and 3, they are already diagonalized. But for 2 and 4, they are partly 

diagonalized and not diagonalized at the same basis. (For example, 𝐻2 is partly diagonalized 

at 1,2 sites but 𝐻4 is partly diagonalized at 2,3 sites. They have an overlap index 2 which 

1       2    3      4   5        6 … 2n 

𝐻1 

 

 

𝐻2 

 

 

𝐻3 

 

 

𝐻4 

 

P. 2 



makes them do not commute with each other) 

 

So, we need do Fourier transformation to all of them. The transformation relationship can be 

written below, 

𝑐2𝑗−1 =
1

√𝑛
∑𝑒𝑖𝑘𝑥𝑗𝑐𝑘,𝐴

𝑘

 

𝑐2𝑗 =
1

√𝑛
∑𝑒𝑖𝑘𝑥𝑗𝑐𝑘,𝐵

𝑘

  

𝑐2𝑗−1
† =

1

√𝑛
∑𝑒−𝑖𝑘𝑥𝑗𝑐𝑘,𝐴

†

𝑘

 

𝑐2𝑗
† =

1

√𝑛
∑𝑒−𝑖𝑘𝑥𝑗𝑐𝑘,𝐵

†

𝑘

 

After Fourier transformation, those Hamiltonians are, 

𝐻1 = ∑[2𝐾1
∗(𝑐𝑘,𝐵

† 𝑐𝑘,𝐵 −
1

2
) + 2𝐾2

∗(𝑐𝑘,𝐴
† 𝑐𝑘,𝐴 −

1

2
)]

𝑘

 

𝐻2 = ∑[𝐾3(𝑐𝑘,𝐴
† 𝑐𝑘,𝐵 + 𝑐𝑘,𝐵

† 𝑐𝑘,𝐴 + 𝑐𝑘,𝐴
† 𝑐−𝑘,𝐵

† + 𝑐−𝑘,𝐵𝑐𝑘,𝐴)]

𝑘

 

𝐻3 = ∑[2𝐾2
∗(𝑐𝑘,𝐵

† 𝑐𝑘,𝐵 −
1

2
) + 2𝐾1

∗(𝑐𝑘,𝐴
† 𝑐𝑘,𝐴 −

1

2
)]

𝑘

 

𝐻4 = ∑[𝐾3(𝑒
𝑖𝑘𝑐𝑘,𝐵

† 𝑐𝑘,𝐴 + 𝑒−𝑖𝑘𝑐𝑘,𝐴
† 𝑐𝑘,𝐵 + 𝑒−𝑖𝑘𝑐−𝑘,𝐵

† 𝑐𝑘,𝐴
† + 𝑒𝑖𝑘𝑐𝑘,𝐴𝑐𝑘,𝐵)]

𝑘

 

Again, write partially diagonalized parts of those Hamiltonians in 4 × 4 matrixes with single 

particle basis below, 

[𝑐𝑘,𝐴
† 𝑐𝑘,𝐵

† 𝑐−𝑘,𝐴 𝑐−𝑘,𝐵]𝐻(|𝑘|)𝑖

[
 
 
 
 
𝑐𝑘,𝐴

𝑐𝑘,𝐵

𝑐−𝑘,𝐴
†

𝑐−𝑘,𝐵
†

]
 
 
 
 

 

Now, 𝐻(|𝑘|)𝑖 in matrix form are, 

𝐻(|𝑘|)1 = [

2𝐾2
∗ 0

0 2𝐾1
∗

0 0
0 0

0 0
0 0

−2𝐾2
∗ 0

0 −2𝐾1
∗

] 

𝐻(|𝑘|)2 = 𝐾3 [

0 1
1 0

0 1
−1 0

0 −1
1 0

0 −1
−1 0

] 



𝐻(|𝑘|)3 = [

2𝐾1
∗ 0

0 2𝐾2
∗

0 0
0 0

0 0
0 0

−2𝐾1
∗ 0

0 −2𝐾2
∗

] 

𝐻(|𝑘|)4 = 𝐾3 [

0 𝑒−𝑖𝑘

𝑒𝑖𝑘 0
0 −𝑒−𝑖𝑘

𝑒𝑖𝑘 0
0 𝑒−𝑖𝑘

−𝑒𝑖𝑘 0
0 −𝑒−𝑖𝑘

−𝑒𝑖𝑘 0

] 

We would like to derive the modulus of eigenvalues which is larger than 1 (we call 𝑒𝜂𝑘) for 

matrix 𝑒𝐻(|𝑘|)1𝑒𝐻(|𝑘|)2𝑒𝐻(|𝑘|)3𝑒𝐻(|𝑘|)4. In this way, the product of those eigenvalues 𝑒∑ 𝜂𝑘|𝑘|  

can give the largest modulus 𝜆𝑚𝑎𝑥 . Remember 𝜆𝑚𝑎𝑥  should be real and positive, then 

𝑒∑ 𝜂𝑘|𝑘| = 𝑒𝑅𝑒[∑ 𝜂𝑘|𝑘| ]. 

 

Actually, it is not straightforward to solve eigenvalues of 𝑒𝐻(|𝑘|)1𝑒𝐻(|𝑘|)2𝑒𝐻(|𝑘|)3𝑒𝐻(|𝑘|)4 . 

Fortunately, we do not have to solve all of them in our final result, by noticing the eigenvalues 

of 𝑒𝐻(|𝑘|)1𝑒𝐻(|𝑘|)2𝑒𝐻(|𝑘|)3𝑒𝐻(|𝑘|)4 have a character below, 

𝐸1 × 𝐸2
∗ = 1 

𝐸3 × 𝐸4
∗ = 1 

𝐸1 × 𝐸2 × 𝐸3 × 𝐸4 = 1 

So, we can rewrite 4 eigenvalues 𝐸1, 𝐸2, 𝐸3, 𝐸4  as 𝑒𝜂𝑘,1 , 𝑒−𝜂𝑘,1
∗

, 𝑒𝜂𝑘,2 , 𝑒−𝜂𝑘,2
∗

 . Then partition 

function is, 

𝑍 = 𝑇𝑟[(𝑉1𝑉2𝑉3𝑉4)
𝑚] 

    = lim
𝑚→∞

𝜆𝑚𝑎𝑥
𝑚  

    = lim
𝑚→∞

((2 sinh(2𝐾1))
𝑛(2 sinh(2𝐾2))

𝑛𝑒𝑅𝑒[∑ (𝜂𝑘,1+𝜂𝑘,2)|𝑘| ])
𝑚

 

    = lim
𝑛→∞

lim
𝑚→∞

((4 sinh(2𝐾1) sinh(2𝐾2))
𝑛𝑒

𝑅𝑒[
𝑛
4𝜋 ∫ (𝜂𝑘,1+𝜂𝑘,2)𝑑𝑘

2𝜋
0 ]

)
𝑚

 

Free energy per-site is, 

𝐹 = −𝑘𝑇
ln(𝑍)

4𝑚𝑛
 

    = −𝑘𝑇 (
1

4
ln(4 sinh(2𝐾1) sinh(2𝐾2)) +

1

32𝜋
∫ (𝜂𝑘,1 + 𝜂𝑘,2 + 𝜂𝑘,1

∗ + 𝜂𝑘,2
∗ )𝑑𝑘

2𝜋

0

) 

    = −𝑘𝑇{
1

4
ln(sinh(2𝐾1) sinh(2𝐾2)) +

1

2
ln (2) 

        +
1

64𝜋2
∫ 𝑑𝑘 ∫ ln (∏(𝑒𝜂𝑘,𝑖 + 𝑒−𝜂𝑘,𝑖 − 2 cos(𝑤))

4

𝑖

)
2𝜋

0

𝑑𝑤
2𝜋

0

} 

Now we write down eigenequation of 𝑒𝐻(|𝑘|)1𝑒𝐻(|𝑘|)2𝑒𝐻(|𝑘|)3𝑒𝐻(|𝑘|)4 explicitly, 

𝐸4 + (𝐴𝑟 + 𝑖𝐴𝑖)𝐸
3 + 𝐵𝑟𝐸

2 + (𝐴𝑟 − 𝑖𝐴𝑖)𝐸 + 1 = 0 

Here, 

𝐴𝑟 = −4 cosh(2𝐾1
∗) cosh(2𝐾2

∗) cosh(2𝐾3) − 2 sinh(2𝐾1
∗) sinh(2𝐾2

∗) (1 + cosh2 2𝐾3) 



           −(sinh2(2𝐾1
∗) + sinh2(2𝐾2

∗)) sinh2(2𝐾3) cos(𝑘) 

𝐴𝑖 = (sinh2(2𝐾1
∗) − sinh2(2𝐾2

∗)) sinh2(2𝐾3) sin(𝑘) 

𝐵𝑟 = 2 cosh2(2𝐾3) 

          +2(cosh2(2𝐾1
∗) cosh2(2𝐾2

∗) + sinh2(2𝐾1
∗) sinh2(2𝐾2

∗))(1 + cosh2(2𝐾3)) 

          +8 sinh(2𝐾1
∗) sinh(2𝐾2

∗) cosh(2𝐾1
∗) cosh(2𝐾2

∗) cosh(2𝐾3) 

          −4 sinh(2𝐾1
∗) sinh(2𝐾2

∗) sinh2(2𝐾3) cos(𝑘) 

We make it a reciprocal 8th degree equation, whose roots are 𝐸1,
1

𝐸1
∗ , 𝐸2,

1

𝐸2
∗ ,

1

𝐸1
, 𝐸1

∗,
1

𝐸2
, 𝐸2

∗ 

𝐸8 + 2Ar𝐸
7 + (2𝐵𝑟 + 𝐴𝑟

2 + 𝐴𝑖
2)𝐸6 + 2Ar(1 + Br)E

5 + (2 + 2Ar
2 − 2Ai

2 + Br
2)E4 + 2Ar(1

+ Br)E
3 + (2𝐵𝑟 + 𝐴𝑟

2 + 𝐴𝑖
2)E2 + 2ArE + 1 = 0 

Consider a general reciprocal 8th degree equation, 

𝑥8 + 𝑎𝑥7 + 𝑏𝑥6 + 𝑐𝑥5 + 𝑑𝑥4 + 𝑐𝑥3 + 𝑏𝑥2 + 𝑎𝑥 + 1 = 0 

By replacing 𝑥 +
1

𝑥
= 𝑦, we have, 

𝑦4 + 𝑎𝑦3 + (𝑏 − 4)𝑦2 + (𝑐 − 3𝑎)𝑦 + 𝑑 − 2𝑏 + 2 = 0 

We would like to get a result (𝑦1 − 𝑚)(𝑦2 − 𝑚)(𝑦3 − 𝑚)(𝑦4 − 𝑚). (Here, 𝑦1, 𝑦2, 𝑦3, 𝑦4 are 

4 roots of this equation). By using Vieta theorem for 4th degree equation, 

𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 = −𝑎 

𝑦1𝑦2 + 𝑦1𝑦3 + 𝑦1𝑦4 + 𝑦2𝑦3 + 𝑦2𝑦4 + 𝑦3𝑦4 = 𝑏 − 4 

𝑦1𝑦2𝑦3 + 𝑦1𝑦2𝑦4 + 𝑦1𝑦3𝑦4 + 𝑦2𝑦3𝑦4 = 3𝑎 − 𝑐 

𝑦1𝑦2𝑦3𝑦4 = 𝑑 − 2𝑏 + 2 

Then 𝑋 = (𝑦1 − 𝑚)(𝑦2 − 𝑚)(𝑦3 − 𝑚)(𝑦4 − 𝑚) can be expressed, 

𝑋 = 𝑑 − 2𝑏 + 2 − 𝑚(3𝑎 − 𝑐) + 𝑚2(𝑏 − 4) + 𝑚3𝑎 + 𝑚4 

Replace 𝑎, 𝑏, 𝑐, 𝑑,𝑚 by 𝐴𝑟 , 𝐴𝑖 , 𝐵𝑟 , cos (𝑤) 

𝑋 = 𝐵𝑟
2 − 4𝐵𝑟 − 4𝐴𝑖

2 + 4 

−2 cos(𝑤) (4𝐴𝑟 − 2𝐴𝑟𝐵𝑟) 

+4 cos2(𝑤) (𝐴𝑟
2 + 𝐴𝑖

2 + 2𝐵𝑟 − 4) 

+8 cos3(𝑤) 2𝐴𝑟 

+16 cos4(𝑤) 

Free energy per-site as a function of 𝑋(𝑤, 𝑘) is, 

𝐹 = −𝑘𝑇{
1

2
ln (2) 

         +
1

64𝜋2
∫ 𝑑𝑘 ∫ ln[(sinh(2𝐾1) sinh(2𝐾2))

4 ∙ 𝑋(𝑤, 𝑘)]
2𝜋

0

𝑑𝑤
2𝜋

0

} 

Factorize 𝑋(𝑤, 𝑘) to 𝑋1, 𝑋2. By knowing, 

𝑋1 − 𝑋2 = 4(sinh2(2𝐾1
∗) − sinh2(2𝐾2

∗)) sinh2(2𝐾3) sin(𝑘) sin(𝑤) 

𝑋1 + 𝑋2 = 8(cosh(2𝐾1
∗) cosh(2𝐾2

∗) cosh(2𝐾3) + sinh(2𝐾1
∗) sinh(2𝐾2

∗) − cos(𝑤))2 

                −8(cos(𝑤) + cos(𝑘))(sinh(2𝐾1
∗) sinh(2𝐾2

∗) sinh(2𝐾3)) 

                −4 cos(𝑘) cos(𝑤) (sinh2(2𝐾1
∗) + sinh2(2𝐾2

∗)) sinh2(2𝐾3) 

                −4(sinh2(2𝐾1
∗) + sinh2(2𝐾2

∗)) sinh2(2𝐾3) 

And according to symmetry of 𝑤, ∫ ln (𝑋1)𝑑𝑤
2𝜋

0
= ∫ ln (𝑋2)𝑑𝑤

2𝜋

0
, so we can rewrite free 

energy per-site, 



𝐹 = −𝑘𝑇{
1

2
ln (2) 

         +
1

64𝜋2
∫ 𝑑𝑘 ∫ ln[(sinh(2𝐾1) sinh(2𝐾2))

4 ∙ 𝑋1
2]

2𝜋

0

𝑑𝑤
2𝜋

0

} 

    = −𝑘𝑇{
1

2
ln (2) 

         +
1

32𝜋2
∫ 𝑑𝑘 ∫ ln[(sinh(2𝐾1) sinh(2𝐾2))

2 ∙ 𝑋1]
2𝜋

0

𝑑𝑤
2𝜋

0

} 

Explicitly, factorize (sinh(2𝐾1) sinh(2𝐾2))
2 ∙ 𝑋1 again, 

4 (cosh(2K1) cosh(2K2) cosh(2K3) + 1 − cos(w) sinh(2K1) sinh(2K2)

+ sinh(2K1) sinh(2K3) cos (
w − k

2
) + sinh(2K1) sinh(2K3) cos (

w + k

2
)) 

∙ (cosh(2K1) cosh(2K2) cosh(2K3) + 1 − cos(w) sinh(2K1) sinh(2K2)

− sinh(2K1) sinh(2K3) cos (
w − k

2
) − sinh (2K1)sinh (2K3)cos (

w + k

2
)) 

By replacing 
𝑤−𝑘

2
,
𝑤+𝑘

2
  with 𝑤1, 𝑤2 , notice those two terms are equal again according to 

symmetry of 𝑤1, 𝑤2 

𝐹 = −𝑘𝑇{
3

4
ln (2) 

         +
1

16𝜋2
∫ ∫ ln[(cosh(2K1) cosh(2K2) cosh(2K3) + 1

2𝜋

0

2𝜋

0

− cos(w1 + 𝑤2) sinh(2K1) sinh(2K2) − sinh(2K1) sinh(2K3) cos(𝑤1)

− sinh(2K1) sinh(2K3) cos(w2))] 𝑑𝑤1𝑑𝑤2} 

It has a very similar form with the case in 2D square lattice. 

 

Discussion 

 

Finally, as an end of this paper, we make the term in ln ( ) of free energy per-site zero, give 

phase transition conditions for those two models. 

cosh(2𝐾1) cosh(2𝐾2) − sinh(2𝐾1) − sinh(2𝐾2) = 0 

→ sinh (
2𝐽1
𝑘𝑇𝑐

) sinh (
2𝐽2
𝑘𝑇𝑐

) = 1 

And 

cosh(2K1) cosh(2K2) cosh(2K3) + 1 − sinh(2K1) sinh(2K2) − sinh(2K1) sinh(2K3)

− sinh(2K1) sinh(2K3) = 0 

→ sinh (
2𝐽1
𝑘𝑇𝑐

) sinh (
2𝐽2
𝑘𝑇𝑐

) sinh (
2𝐽3
𝑘𝑇𝑐

) = sinh (
2𝐽1
𝑘𝑇𝑐

) + sinh (
2𝐽2
𝑘𝑇𝑐

) + sinh (
2𝐽3
𝑘𝑇𝑐

) 
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